请选择 进入手机版 | 继续访问电脑版
    查看: 309|回复: 0

    8.2 图的存储表示—邻接表

    [复制链接]

    883

    主题

    941

    帖子

    3575

    积分

    管理员

    Rank: 9Rank: 9Rank: 9

    积分
    3575
    基情
    1843
    发表于 2016-9-9 23:28:11 | 显示全部楼层 |阅读模式
    邻接表(Adjacency List)是图的一种顺序存储与链式存储结合的存储方法。邻接表表示法类似于树的孩子链表表示法。就是对于图G 中的每个顶点vi,将所有邻接于vi 的顶点vj 链成一个单链表,这个单链表就称为顶点vi 的邻接表,再将所有点的邻接表表头放到数组中,就构成了图的邻接表。在邻接表表示中有两种结点结构,如图8.9 所示。

    8.2 图的存储表示—邻接表

    8.2 图的存储表示—邻接表
    一种是顶点表的结点结构,它由顶点域(vertex)和指向第一条邻接边的指针域(firstedge)构成,另一种是边表(即邻接表)结点,它由邻接点域(adjvex)和指向下一条邻接边的指针域(next)构成。对于网图的边表需再增设一个存储边上信息(如权值等)的域(info),网图的边表结构如图8.10 所示。

    8.2 图的存储表示—邻接表

    8.2 图的存储表示—邻接表

    邻接表表示的形式描述如下:
    #define MaxVerNum 100 /*最大顶点数为100*/
    typedef struct node{ /*边表结点*/
    int adjvex; /*邻接点域*/
    struct node * next; /*指向下一个邻接点的指针域*/
    /*若要表示边上信息,则应增加一个数据域info*/
    }EdgeNode;
    typedef struct vnode{ /*顶点表结点*/
    VertexType vertex; /*顶点域*/
    EdgeNode * firstedge; /*边表头指针*/
    }VertexNode;
    typedef VertexNode AdjList[MaxVertexNum]; /*AdjList 是邻接表类型*/
    typedef struct{
    AdjList adjlist; /*邻接表*/
    int n,e; /*顶点数和边数*/
    }ALGraph; /*ALGraph 是以邻接表方式存储的图类型*/
    建立一个有向图的邻接表存储的算法如下:
    void CreateALGraph(ALGraph *G)
    {/*建立有向图的邻接表存储*/
    int i,j,k;
    EdgeNode * s;
    printf("请输入顶点数和边数(输入格式为:顶点数,边数):\n");
    scanf("%d,%d",&(G->n),&(G->e)); /*读入顶点数和边数*/
    printf("请输入顶点信息(输入格式为:顶点号<CR>):\n");
    for (i=0;i<G->n;i++) /*建立有n 个顶点的顶点表*/
    {scanf("\n%c",&(G->adjlist.vertex)); /*读入顶点信息*/
    G->adjlist.firstedge=NULL; /*顶点的边表头指针设为空*/
    }
    printf("请输入边的信息(输入格式为:i,j):\n");
    for (k=0;k<G->e;k++) /*建立边表*/
    {scanf("\n%d,%d",&i,&j); /*读入边<Vi,Vj>的顶点对应序号*/
    s=(EdgeNode*)malloc(sizeof(EdgeNode)); /*生成新边表结点s*/
    s->adjvex=j; /*邻接点序号为j*/
    s->next=G->adjlist.firstedge; /*将新边表结点s 插入到顶点Vi 的边表头部*/
    G->adjlist.firstedge=s;
    }
    }/*CreateALGraph*/
    算法8.2

    若无向图中有n 个顶点、e 条边,则它的邻接表需n 个头结点和2e 个表结点。显然,在边稀疏(e<<n(n-1)/2)的情况下,用邻接表表示图比邻接矩阵节省存储空间,当和边相关的信息较多时更是如此。

    在无向图的邻接表中,顶点vi 的度恰为第i 个链表中的结点数;而在有向图中,第i个链表中的结点个数只是顶点vi 的出度,为求入度,必须遍历整个邻接表。在所有链表中其邻接点域的值为i 的结点的个数是顶点vi 的入度。有时,为了便于确定顶点的入度或以顶点vi 为头的弧,可以建立一个有向图的逆邻接表,即对每个顶点vi 建立一个链接以vi为头的弧的链表。例如图8.12 所示为有向图G2(图8.2)的邻接表和逆邻接表。

    8.2 图的存储表示—邻接表

    8.2 图的存储表示—邻接表
    在建立邻接表或逆邻接表时,若输入的顶点信息即为顶点的编号,则建立邻接表的复杂度为O(n+e),否则,需要通过查找才能得到顶点在图中位置,则时间复杂度为O(n·e)。

    在邻接表上容易找到任一顶点的第一个邻接点和下一个邻接点,但要判定任意两个顶点(vi 和vj)之间是否有边或弧相连,则需搜索第i 个或第j 个链表,因此,不及邻接矩阵方便。
    回复

    使用道具 举报

    您需要登录后才可以回帖 登录 | 立即注册

    本版积分规则

    QQ|小黑屋|网站地图|DZ商业模板|VR福利资源|嵌入式Linux论坛 ( 粤ICP备15085165号-2 )

    GMT+8, 2017-10-21 07:52 , Processed in 0.080905 second(s), 26 queries .

    Powered by 深嵌论坛 X3.4

    © 2001-2013 Comsenz Inc.

    快速回复 返回顶部 返回列表